Aggregators in software supply

chain
2023 03 08 KTH

Hans Thorsen Lamm
Lamm Consulting AB
hans@lammda.se

https://github.com/Nordix/bomres

https://kth-se.zoom.us/j/64902093977

mailto:hans@lammda.se
https://github.com/Nordix/bomres
https://kth-se.zoom.us/j/64902093977

Agenda

* Problem
* Security
 Emerging regulations
 EU Cybersecurity Resilience Act
* Bom Resolver
e Build framework versus "Aggregators"
* Backtrack the Alpine ECO system
* Demo
* Oneline binary componentin SBOM
 Complete SBOM with product source and toolsrequired
 Rebuildbinary component

Problem

Keep cost down -> Introduce Open Source -> Supply chain attacks

~

Development Operation

ﬂ
r— Secure Edge Device
Foss in the supply chain is a reality. How open-source software took over the world | TechCrunch

Foss may contain bugs, some impacts security Initial Access, Tactic TAOOO1 - Enterprise | MITRE ATT&CK®

https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/
https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/
https://attack.mitre.org/tactics/TA0001/

Nginx and Vattenfall under attack

Open Source Software | RISE

Open Source Software (OSS) constitutes a
critical building block of our common digital
infrastructure. About 90 % of today’s
software contains OSS. The amount of code
in companies’ codebases made up of OSS

has increased from 36 % in 2015 to 75 % in
2020.

Source code project

\
I
Aggregator |
I
I
I

public IT-supplier Vattenfall
binaries

- e s s e e e . .y,

ol Tele2 =

10:22 4

AN N B LAY ES

502 Bad Gateway

ﬁ

nginx

Vattenfall uses ngnix
Bad gatewayindicates
reverse proxy setup.
Let's check for
vulnerabilities

https://www.ri.se/en/what-we-do/expertises/open-source-software

Nginx Vulnerabilities

C--J1 - Top 5 Most Critical NGINX Vulnerabilities Found - Astra Security Blog (getastra.com)
Updating NGINX for Vulnerabilitiesin the MP4 and HLS Video-Streaming Modules - NGINX

NginRAT parasite targets Nginx — Sansec

“ LD_PRELOAD injected

NginRAT Sansec»
/usr/sbin/nginx
——— - —
» hp-sh: o
diopen() 7| (ginran) i cee
P e R
collect P| 47.115.46.167
P] -
wait
_ |, icommand
Al
execute
f—’ -
:
Vi
Al
e O

Many security issues related to pluginsloaded during runtime (dlopen)
Recompile to include module functionalityin static binary

https://www.getastra.com/blog/911/top-5-most-critical-nginx-vulnerabilities-found/
https://sansec.io/research/nginrat
https://www.nginx.com/blog/updating-nginx-for-vulnerabilities-in-the-mp4-and-hls-video-streaming-modules/

Attack by patching NGINX

source="https://nginx.org/download/Spkgname-Spkgver.tar.gz

nginx-dav-ext-module~pr-56.patch::https://github.com/arut/nginx-dav-ext-module/pull/56.patch

Roman Arutyunyan is a member of the core development
team at NGINX.

Source code patches are not listed in
File, Data Source DS0022 | MITRE ATT&CK®

"Trust but verify"

#include <stdio.h>

int main()

{

--- foss.c.orig 2022-01-24 10:54:50.226384276 +0100
+++ foss.c 2022-01-24 11:27:51.058541111 +0100
@@-2,6+2,6 @@

int main()

{

- printf("Buggy processing\n");

+ printf(”Evil processing\n");
return O;

}

4

arut github.com

printf("Buggy processing\n");
return O;

}

4

patch foss.c < foss.patch

ttinclude <stdio.h>

int main()

{

printf(“>Evil processing\n");
return O;

}

https://www.nginx.com/nginxconf/2019/speaker/roman-arutyunyan/
https://github.com/arut
https://attack.mitre.org/datasources/DS0022/

In February 2019, NGINX finally
dethroned Apache HTTPD and
became the most widely deployed
server on the internet. According to
the Netcraft December 2019 Web
Server Survey, NGINX has market
share of 38%.

"Russian police have raided today
the Moscow offices of NGINX, Inc.,
a subsidiary of F5 Networks and the
company behind the internet's
most popular web server
technology.

Equipmentwas seized and
employees were detained for
guestioning."

Mitre ATT&CK

RE: Regarding ATT&CK request 10909

@ Hans Thorsen Lamm <hans@lammda.se>

2023-01-28 16:27

Tow ATTACK

Hi Jamie,

On a high level patches are covered in T1195/001. But there are two kind of patches
* Binary patches

* Source code patches

Ngingx is a very popular internet facing component originating from Russia.
| have analysed the Alpine build framework and it starts by unpacking the primary source and then apply patches from
private GitHub accounts.

https://git.alpinelinux.org/aports
main/nginx/APKBUILD

In the source section all external dependencies are listed, and you see several patches from two private github acounts.

source="https://nginx.org/download/Spkgname-Spkgver.tar.gz

nginx-dav-ext-module™pr-56.patch::https://github.com/arut/nginx-dav-ext-module/pull/56.patch

nginx-module-vis™02-ad40022.patch::https://github.com/vozlt/nginx-module-vts/commit/ad4002262¢19e81390f518a14f93hb594862¢575.patch
nginx-module-vis™03-c08781c.patch::https://eithub.com/vozlt/nginx-module-vts/commit/c08781c5095d9e6090c47 1 76hdea322ce983echt.patch

The Data Source DS0022 is more detailed than T1195/001, but | am not sure if source code patches are included.

Maybe it is enough to just add source code patches as a data source in DS0022 and keep the T1195/001 as is.

| wish you a great weekend too.

/{ Hans

Russian police raid NGINX Moscow office | ZDNET

https://news.netcraft.com/archives/2019/12/10/december-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/12/10/december-2019-web-server-survey.html
https://www.zdnet.com/article/russian-police-raid-nginx-moscow-office/

In addition to security we have emerging legal obligations

Manufacturer’s obligations

a3 Cybersecurity is taken into account in planning, design,
Oé development, production, delivery and maintenance phase;

:E All cybersecurity risks are documented;

Manufacturers will have to report actively exploited
vulnerabilities and incidents;

Once sold, manufacturers must ensure that for

expected product lifetime or for a period o
years (whichever is the shorter), vulnerabi
are handled effectively;

Clear and understandable instructions for the use of products
9. with digital elements;

3 Security updates to be made available for
\é at least five years.

Manufacturer’s obligations under the EU Cyber Resilience Act. (Image: European Commission)

EU Cyber Resilience Act: the GDPR for |oT - Embedded.com

Released

3 menths and 2 weeks age
(22 Nov 2022)

9 months ago
(23 May 2022)

1 year and 3 months ago
(24 Nov 2021)

1 year and & months ago
(15 Jun 2021)

2 years ago
(14 Jan 2021)

2 years and 9 months ago
(29 May 2020)

3 years ago
(19 Dec 2019)

3 years and & months ago
(19 Jun 2019)

4 years ago
(29 Jan 2019)

4 years and & months ago
(26 Jun 2018)

5 years ago
(30 Nov 2017)

Alpine Linux | endoflife.date

Security Support

Ends in 1 month and 3 weeks
(01 May 2023)

https://endoflife.date/alpine
https://www.embedded.com/eu-cyber-resilience-act-the-gdpr-for-iot/

Software Bill Of Material

Ac

Executive Order on Improving the
Nation’s Cybersecurity

Sec 4 - Enhancing Software Supply Chain Security — mandates that

the government take action to protect software — with a focus on “critical
software” — against cyber-attacks.

*Within 30 days of the Order, the government will solicit input from
various sources, including the private sector, regarding standards,
procedures, and criteria for software security (including for a
Software Bill of Materials (“SBOM”)).

Funding to secure 10000 Open source projects

The Linux Foundation and OpenSSF project,
with backing from Microsoft and Google,
aims to improve security of 10,000 open-source projects

Scribe

Hans Thorsen

¥ How to prove the correctness of a SBOM ?

My question discussed starting ~ 40 minutes into recording

Steve Springett

https://www.linkedin.com/video/event/urn:li:ugcPost:7027618751642488832/
https://github.com/stevespringett
https://www.csoonline.com/article/3648353/alpha-omega-project-takes-a-human-centered-approach-to-open-source-software-security.html

Bom Resolver

*Bridge the gap between
eFoss culture (Cool stuff)
eCompliance culture (Boring stuff)

e Always source code, no exemption
eRebuildin isolation -> Correctness of SBOM
eNo binaries whatsoever

e 2018 Automate builder of microservice based on Alpine

* 2021 Added resolver as part of Internal Integrity program
e 2022 Released as Open source , presented on FOSDE M

e 2023 Received first funding 50.000 SEK from Sidiatech

https://archive.fosdem.org/2022/schedule/event/sbom_resolver_generating_detailed_sboms_for_alpine/
https://sidiatech.com/

BomResolver

@ &

A

https://bomresolver.io

Commercial Software

>
[d
—t
G
2
N
o
o
3
=
D
wn
o
<
®
N
(@)
o
3

v

p ¢ I o o e 2/« Artifacts
$. .
_____________ * Evidence of compliance

-———

w
(1)
(@)
c
=,
—

<
Q
>
L

<
N
(0]

https://github.com/Nordix/bomres

- =

https://alpinelinux.org

https://github.com/Nordix/bomres
https://bomresolver.io
https://bomresolver.com
https://alpinelinux.org

Development

-

Foss Management

~

= = ===

- ——— -

Desired SBOM

N e -

o

-~ -

——— -

Aggregator

Aggregated SBOM

Internal
Internal

Mirror source
Mirror binary

binaries

public
binaries

Complete SBOM

Trusted aggregator
Generate tool
src-build

S o
—_

5 2
o >
v O
T v
S 3
_— =
S ©
s c
A<

Complete SBOM

P e e e e e e e e e e e e e e e e e e i T T R

binaries

el - e — e ——— T

N e e e e -

N

Desired SBOM

A

——————— ™ —
Settings
N
Binary build >
J

Add transitive

Bom Resolver Flow

——

Aggregated SBOM

package dependencies

PASS1 -> PASS 2 -> PASS 3

-> PASS 4

Resolve build I

e

Resolved SBOM

Resolver support both
Depth and Effectiveness

Depth vs. Effectiveness

Limited visibility enables less awareness of risk

LolaY oLolal ol alololoL olol s
ecedecode
ete0d

€
[
€
(S
©
S
©
€
€
©
€
©
©
€
©
[
€
(s

More complete visibility enables
more complete awareness of risk

Resolved ?

Custom patch

Download
andanalyze
source

Generate build
container

)

Isolated build I————V

-

J

Home - Lighttpd - fly light

Alpine as a aggregator of lighttpd includes
many features

Buildrootis based on rules that excludes
features not needed in production.

Note: for real project the dependencies of
tools for buildingadds requirements on the
tools.

https://git.alpinelinux.org/aports

makedepends="
automake
autoconf

build() {

./configure \
--with-1ldap \
--with-openssl \
--with-zstd \
--with-brotli \
--with-lua

make

y

https://github.com/buildroot/buildroot.git

ifeq ($(BR2_PACKAGE LIGHTTPD_LDAP),y)
LIGHTTPD _DEPENDENCIES += openldap
LIGHTTPD_CONF_OPTS += -Dwith_ldap=true
else
LIGHTTPD_CONF_OPTS += -Dwith_ldap=false
endif

https://www.lighttpd.net/
https://git.alpinelinux.org/aports

Build containerrequired to build product is
generated from product sbom

Tool

Autogenerated SBOM
alpine-base

util-linux

alpine-sdk

build-base

Product abuild

Additional tools needed for specific
packages during build

busybox

linux-headers

lighttpd

automake

lighttpd

lighttpd
autoconf

Additional packages needed for
building the product

openssl|

brotli

openldap

lua5.4

https://bomresolver.io zstd

https://bomresolver.io

Combines Build System with Binary distribution

Short feedback loops
Enables us to define the
right product

When the product is

defined, we build it right
(In compliance with NIS2, DORA, etc)

L

| Pros

~ Cons

Building everything manually

Binary distribution
Debian, Ubuntu, Fedora, etc.

Full flexibility
Learning experience

Dependency hell
Need to understand a lot of details
Version compatibility

Lack of reproducibility
rd to customize

Large system
Uses nati

s of mandatory dependencies
Not available for all architectures

Build systems

Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy

Fully reproducible

Uses cross-compilation

Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

$ easy as a binary distributs

https://bootlin.com/training/puildroot/

https://bootlin.com/training/buildroot/

Demo

Demo Resolver (Service

Compliance Service @

This service is a frontend to the Alpine BOM Resolver

« https://bomresclver.io

© Lamm Consulting AB

servers
Artifacts ardifacts

/artifacts list all artifacts

Jartifacts Create new artifact.

| Jartifacts/{artifact_id} Remove specified artifact

Jartifacts/{artifact_id} get artifact data

/artifacts/{artifact_id} Modify artifact

Authentication wken endpoint

/token |SON Web Token (JWT)

MOnitOring Service Metrics
/liveness Indicates if services is alive

/readyness Indicates if services is ready to serve requests

- —

~

https://bomresolver.com

— e e e e e e e e = ==

Demo steps

S1: Create an access token

S2: Post a "one-line" Desired SBOM

S3: Depth / Effectiveness (CISA, slide 22)

S4: Get aggregated.json (All metadatafrom "binarybuild)

S5: Get resolved.json (contain ALL source needed for rebuild)

S8: Get standardlighttpd, check =V for module support), Is /etc/apk/keys

Depth vs. Effectiveness

S11: Patch APKBUILD for lighttpd, Appliedfor 1, returns 2 (new artifact) & Sea

000000000000
tee00t0000000

eeeotcoée
0te0d

S12: Download custom product with build container 24 seconds) ‘ B
S13: Build custom lighttpd (build 1.23 minutes) g oAt R

i leeeooe

25
8% i
g
§3 5

S14: Get customized lighttpd, check -V for module support), Is /etc/apk/keys/

CISA SBOM-A-RAMA

https://www.cisa.gov/sites/default/files/2023-01/Dec15-SBOM-a-rama-slides.pdf

Takeway

* Always source code, no exemption

 No binaries whatsoever

* Bridge the gap between
* Foss culture (Cool stuff)
e Complianceculture (Boring stuff)

* Business model for Bom Resolver
* Alpineresolver (Github / MIT License)
 Bomresolver.io (Apply the concept for Go, Python etc)
 Bomresolver.com (Complianceas a service)

Support slides

R-C - S A - S - A - S -

Bom Resolver as tool

podman run --rm docker.io/bomres/base os alpine make > Makefile
make config

vim product/build/base os/config/packages

vim product/build/base os/config/settings

make build

make resolve

make download source

Bom Resolver

https://bomresolver.io/start/

Renovate

——— ™ —
Desired SBOM NIST "secfixes": {
"1.2.2_pre2-ro": [
"CVE-2020-28928"
1,
"1.1.23-r2": [
v] "CVE-2019-14697"
(1,
Initial Build * Rebuildtriggered "1.1.15-r4": [
"CVE-2016-8859"
J L By CVE event]
}

Mend Renovate: Automated Dependency Updates

https://www.mend.io/free-developer-tools/renovate/

Pre-patch vulnerability

Before applying patches

Analyze patches

Download source
Analyze source

Analyze patch

Post-patch vulnerability

Apply patch
pply patches scan

After applying patches

Compare pre and post

Security patch gate

From mockup to market

Short feedback loops
Enables us to define the
right product

When the product is

defined, we build it right
(In compliance with NIS2, DORA, etc)

L

Pros

Cons

Building everything manually

Binary distribution
Debian, Ubuntu, Fedora, etc

Full flexibility
Learning experience

Easy to create and extend

Dependency hell

Need to understand a lot of details
Version compatibility

Lack of reproducibility

Hard to customize

Hard to optimize (boot time, size)

Hard to rebuild the full system from source
Large system

Uses native compilation (slow)

No well-defined mechanism to generate an
image

Lots of mandatory dependencies

Not available for all architectures

Build systems

Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility

Built from source: customization and op-
timization are easy

Fully reproducible

Uses cross-compilation

Have embedded specific packages not nec-
essarily in desktop distros

Make more features optional

Not as easy as a binary distribution
Build time

https://bootlin.com/training/buildroot/

https://bootlin.com/training/buildroot/

Example of aggregators are
 Redhat
* QOpenSuse

e Debian
* Alpine

Aggregator fetch source code from
Projects and creates components

provided as
* Packages(rpm, apk, deb)
* ISO images

 Containers(dockerimages)

Aggregators support different
architectures

 x86_64

* Arm

Aggregators improves Foss
e Add functionality
* Fix security issues

Aggregator model

Short feedback loops
Enables us to define the
right product

N
\

Binary distribution
Debian, Ubuntu, Fedora, etc

[Easy to create and extend

public
binaries

o

Foss Development

Initial build
(Base OS/ Middleware)

o - ———

Take Away from Bom Resolver

Mockup phase =

Product phase -

Pros

Cons

Building everything manually

Binary distribution
Debian, Ubuntu, Fedora, etc.

Full flexibility
Learning experience

asy to create and extend

Dependency hell
Need to understand a lot of details
Version compatibility

Lack of reproducibility
rd to customize

Large system
Uses nativ;

s of mandatory dependencies
Not available for all architectures

Build systems
Buildroot, Yocto, PTXdist, etc.

Nearly full flexibility
Built from source: customization and op-
timization are easy

Fully reproducible

Uses cross-compilation

Have embedded specific packages not nec-
essarily in desktop distros
Make more features optional

$ easy as a binary distributs

For better understanding
of the software supply
chain, keep the product
small and study the tools
required to

compile the source code

Simple product

p

.

#include <stdio.h>

int main(void)

{
}

printf("Hello World\n");

N

/

Build dependencies

/ Dynamically linked build \ /Staticlinked build \ ﬂare metal build \

Product Product

hello

ITlllS/
@mus]xﬂﬁ 64 Kerqlel ~ Product
Keme Interﬁace @

Interface

Hardware
Hardware

ardware 8 6 64
- x86 64 @
x86_64 /

(dlopen not covered)

.

Cross compile

Build System
Instruction set. x64
0OS: Linux

GCC native compiler

{i—;]

GCC source code

We'll use the
existing compiler..,

Host System
Instruction set. x64
0S: Linux

GCC cross-compiler

=

cross-compiler...

| Target System
4 Instruction set: AArchéd
e OS5 Linux

a.out

«that builds
programs for AArché4.

Introduction (crosstool-ng.github.io)

https://crosstool-ng.github.io/docs/introduction/

	Slide 1: Aggregators in software supply chain 2023 03 08 KTH
	Slide 2: Agenda
	Slide 3: Problem
	Slide 4:
	Slide 5
	Slide 6: Nginx Vulnerabilities
	Slide 7: Software Stack
	Slide 8: Mitre ATT&CK
	Slide 9
	Slide 10: Software Bill Of Material
	Slide 11: Bom Resolver
	Slide 12: BomResolver
	Slide 13:
	Slide 14: Bom Resolver Flow
	Slide 15
	Slide 16
	Slide 17: Combines Build System with Binary distribution
	Slide 18: Demo
	Slide 19: Demo Resolver (Service)
	Slide 20: Demo steps
	Slide 21: Takeway
	Slide 22: Support slides
	Slide 23: Bom Resolver as tool
	Slide 24: Renovate
	Slide 25: Analyze patches
	Slide 26: From mockup to market
	Slide 27:
	Slide 28: Take Away from Bom Resolver
	Slide 29
	Slide 30
	Slide 31

